Java * implement a non-member method for the stack adt called

 

import java.util.EmptyStackException;
import java.util.Iterator;

public class Lab07P2Wrapper {

private static boolean equals(int[] arr1, int[] arr2) {
 if(arr1.length != arr2.length) return false;
 

 for (int i = 0; i < arr1.length; i++) {
  if (arr1[i] != arr2[i]) {
   return false;
  }
 }
 

 return true;
}

public static void main(String[] args) {
 int[] example = {-1, 1, 3, 9, 11, 11, 11, 15};
 

 int[] input = {9, 11, 15, 11, 1, -1, 3, 11};
 int[] result = stackSort(input);
 

 if(equals(example, result)) {
  System.out.println(“Test Passed!”);
 } else {
  System.out.print(“Test Failed, expected: “);
 

  for(int i = 0; i < example.length; i++) {
   if(i == 0) System.out.print(“{” + example[i] + “, “);
   else if(i == example.length – 1) System.out.print(example[i] + “}”);
   else System.out.print(example[i] + “, “);
  }
 

  for(int i = 0; i < result.length; i++) {
   if(i == 0) System.out.print(“, got {” + result[i] + “, “);
   else if(i == result.length – 1) System.out.print(result[i] + “}”);
   else System.out.print(result[i] + “, “);
  }
 }
}

public static interface Stack<E> {
 public void push(E newEntry);
 public E pop();
 public E top();
 public boolean isEmpty();
 public int size(); 
 public void clear();
}

public static class SinglyLinkedStack<E> implements Stack<E> {

 private static class Node<E> {
  private E element; 
  private Node<E> next;

  public Node(E elm, Node<E> next) { 
   this.element = elm; 
   this.next = next; 
  }

  public Node(E data) { 
   this(data, null);
  }

  public Node() { 
   this(null, null);
  }

  public E getElement() {
   return element;
  }

  public Node<E> getNext() {
   return next;
  }

  public void setElement(E elm) {
   this.element = elm;
  }

  public void setNext(Node<E> next) {
   this.next = next;
  }

  public void clear() {  // no need to return data
    element = null; 
    next = null; 
  }

 }

 // instance variables for the stack object

 private Node<E> header; //Note that this is NOT a dummy header 
 private int currentSize;

 public SinglyLinkedStack() { 
  header = new Node<>(); 
  currentSize = 0; 
 }

 @Override
 public void push(E newEntry) {
  Node<E> nNode = new Node<>(newEntry, header.getNext()); 
  header.setNext(nNode); 
  currentSize++; 
 }

 @Override
 public E pop() {
  E etr = top(); 
  Node<E> ntr = header.getNext(); 
  header.setNext(ntr.getNext()); 
  currentSize–; 
  ntr.clear();
  ntr = null;
  return etr;
 }

 @Override
 public E top() {
  if (isEmpty()) 
   throw new EmptyStackException(); 
  return header.getNext().getElement();
 }

 @Override
 public boolean isEmpty() {
  return size() == 0;
 }

 @Override
 public int size() {
  return currentSize;
 }

 @Override
 public void clear() {
  while (size() > 0) pop(); 
 }

}

/**
 * Implement a non-member method for the Stack ADT called stackSort. 
 * The function takes as a parameter an array of integers and returns the array sorted in increasing order.
 * 
 * For example consider we have an array A = {9, 11, 15, 11, 1, -1, 3, 11}
 * In order to sort values, we will use two stacks which will be called the left and right stacks. 
 * The values in the stacks will be sorted (in non-descending order) and the values in the left stack 
 * will all be less than or equal to the values in the right stack. 
 * 
 * The following example illustrates a possible state for our two stacks:
 * 
 *     left  right
 *     [  ]  [  ]
 *     [  ]  [ 9]
 *     [ 3]  [11]
 *     [ 1]  [11]
 *     [-1]  [15]
 * 
 * Notice that the values in the left stack are sorted so that the smallest value is at the bottom of the stack. 
 * The values in the right stack are sorted so that the smallest value is at the top of the stack. 
 * If we read the values up the left stack and then down the right stack, we get:
 *    A = {-1, 1, 3, 9, 11, 11, 11, 15}
 * which is in sorted order.
 * 
 * 
 * Consider the following cases, using the example shown above as a point of reference, to help you design your algorithm:
 *   1) If we were to insert the value 5, it could be added on top of either stack and the collection would remain sorted. 
 *      What other values, besides 5, could be inserted in the  example without having to move any values?
 * 
 *    2) If we were to insert the value 0, some values must be moved from  the left stack to the right stack before we could actually insert 0. 
 *      How many values must actually be moved?
 * 
 *  3) If we were to insert the value 11, first some values must be moved from the right stack to the left stack. 
 *     How many values must actually be moved?
 *     What condition should we use to determine if enough values have been moved in either of the previous two cases?
 *     
 * YOU MUST USE TWO STACKS, IMPLEMENTATIONS THAT USE Arrays.sort(); 
 * OR ANY SORTING ALGORITHM (BubbleSort, SelectionSort, etc.) WILL NOT BE GIVEN CREDIT
 * 
 * @param array
 * @return Sorted array using two stacks
 */
public static int[] stackSort(int[] array) {
 /*ADD YOUR CODE HERE*/

 return null;
}

}

Need your ASSIGNMENT done? Use our paper writing service to score better and meet your deadline.


Click Here to Make an Order Click Here to Hire a Writer